ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «ЯКУТСКИЙ НАУЧНЫЙ ЦЕНТР СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК»

ИНСТИТУТ БИОЛОГИЧЕСКИХ ПРОБЛЕМ КРИОЛИТОЗОНЫ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (ИБПК СО РАН)

ПРОГРАММА ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА ПО СПЕЦИАЛЬНОСТИ 1.5.4 – БИОХИМИЯ

Программа утверждена на заседании Ученого Совета ИБПК СО РАН

«19» мая 2022 г. протокол № 3
Председатель Ученого Совета, директор (подпись)
— (подпись)
Ф.И.О.

ПРОГРАММА

вступительного экзамена в аспирантуру по специальности 1.5.4 «Биохимия»

Введение.

Предмет и задачи биологической химии. Основные этапы развития биохимии. Направления и перспективы развития биохимии. Значение биохимии для развития биологии, медицины, сельского хозяйства и биотехнологии.

Физико-химические основы биохимии

Жизнь как особая форма движения материи. Значение обмена веществ (катаболизм и анаболизм) в явлениях жизни. Характеристика основных классов химических соединений, входящих в состав живой материи, их роль и значение. Пластические и энергетические вещества. Роль минеральных элементов, биологически активных соединений в обмене веществ.

Значение воды в биологических системах. Основные понятия электрохимии водных растворов. Закон действующих масс, константы диссоциации кислот и оснований, водородный показатель (pH), буферные растворы.

Методы биохимических исследований и их характеристика.

Структура и физико-химические свойства химических соединений, входящих в состав биологических объектов

Аминокислоты. Белки. Аминокислотный состав белков. Физико-химические свойства и стереохимия аминокислот. Классификация аминокислот. Пептидная связь, ее свойства. Первичная структура белков. Специфичность первичной структуры белков и особенности их функционирования на примере некоторых белков. Методы определения первичной структуры белков.

Уровни структурной организации белков. Вторичная, третичная, и четвертичная структура белков. Типы химических связей, стабилизирующих различные уровни белков. Элементы вторичной структуры: альфа-спираль и бета-структура. Значение третичной структуры белковой молекулы для проявления ее биологической активности. Величина и форма белковых молекул. Глобулярные и фибриллярные белки.

Динамичность структуры белка. Олигомерные комплексы белков. Структура миоглобина, гемоглобина и связывание ими кислорода. Конформационная стабильность и подвижность белков. Денатурация белков и полипептидов. Фолдинг и рефолдинг. Шапероны. Взаимодействие белков и низкомолекулярных лигандов.

Полиморфизм белков.

Физико-химические свойства белков. Изоэлектрическая точка белков.

Классификация белков. Простые и сложные белки.

Биологические функции белков.

Методы изучения структуры и физико-химических свойств белков.

Углеводы. Общая характеристика углеводов и их классификация. Природные углеводы и их производные. Стереохимия углеводов. Наиболее широко распространенные в природе гексозы и пентозы и их свойства. Конформация моносахаридов. Взаимопревращения моносахаридов. Олиго- и полисахариды. Дисахариды: строение, свойства, представители: мальтоза, сахароза, лактоза. Гомополисахариды: структура, свойства, важнейшие представители: крахмал, гликоген, клетчатка. Гетерополисахариды.

Липиды. Классификация липидов. Простые и сложные липиды. Жирные кислоты. Изомерия и структура ненасыщенных жирных кислот. Нейтральные жиры и их свойства. Фосфолипиды. Сфинголипиды. Гликолипиды. Сульфолипиды. Воска. Стероиды:

холестерин, желчные кислоты. Полярность молекулы фосфатидов. Участие фосфатидов и других липидов в построении биологических мембран. Изопреноиды. Терпеноиды.

Нуклеиновые кислоты. Роль нуклеиновых кислот в живом организме. Строение нуклеиновых кислот. Нуклеотидный состав. Пуриновые и пиримидиновые основания. Минорные пуриновые и пиримидиновые основания. Углеводные компоненты. Нуклеозиды и нуклеотиды. Циклические нуклеотиды. Комплексообразующие свойства нуклеотидов.

Полинуклеотиды. Особенности строения дезоксирибонуклеиновой кислоты. Первичная структура ДНК. Правила Е. Чаргаффа. Вторичная структура ДНК. Модель Дж. Уотсона и Ф. Крика. Формы двойной спирали ДНК. Третичная структура ДНК. Принцип комплементарности. Роль ДНК как носителя наследственной информации в клетке.

Сравнительная характеристика свойств и функций типов РНК: ядерная, рибосомная, транспортная, мРНК. Первичная структура тРНК. Вторичная структура тРНК (модель «клеверный лист»). Третичная структура тРНК.

Физико-химические свойства нуклеиновых кислот. Денатурация и ренатурация ДНК. Плавление ДНК.

Суперспирализация ДНК. Структура и функционирование хроматина. ДНК хлоропластов и митохондрий. ДНК вирусов и бактерий. Плазмиды.

Методы изучения нуклеиновых кислот. Генная инженерия. Клонирование ДНК. Полимеразная цепная реакция. Генотерапия. Понятие о геномике.

Ферменты. История развития энзимологии. Химическая природа ферментов. Активный и аллостерический центры. Простетические группы и коферменты. Химическая природа коферментов. Роль витаминов, металлов и других кофакторов в ферментативном катализе. Витамины как предшественники коферментов. Локализация ферментов в клетке. Специфичность действия ферментов (примеры).

Основные положения теории ферментативного катализа. Энергия активации ферментативных реакций. Образование промежуточного комплекса «фермент-субстрат». Кинетика ферментативных реакций. Начальная скорость ферментативной реакции. Уравнение Михаэлиса-Бриггса-Холдейна. Константа Михаэлиса и методы ее определения. Единицы активности ферментов. Удельная и молекулярная активность. Активность и числа оборотов фермента.

Влияние различных физических и химических факторов на активность ферментов. Действие температуры и концентрации водородных ионов. Специфические активаторы и ингибиторы ферментативных процессов. Механизм ингибирования ферментов. Обратимое и необратимое, конкурентное и неконкурентное ингибирование.

Классификация и номенклатура ферментов.

Множественные формы ферментов. Изоферменты. Иммобилизованные ферменты. Использование ферментов в биотехнологии и медицине. Энзимотерапия. Рибозимы.

Принципы регуляции ферментативных процессов в клетке и регуляция метаболизма. Аллостерические ферменты. Теория индуцированного синтеза ферментов Жакоба и Моно.

Витамины, коферменты и биологически активные соединения. Роль витаминов в питании животных и человека. Распространение в природе и суточная потребность, физиологическая роль витаминов. Классификация витаминов. Жирорастворимые витамины Характеристика, роль основных представителей. Каротиноиды и их значение как провитаминов А. Водорастворимые витамины. Характеристика, роль основных представителей. Витамины - антиоксиданты. Флавоноиды, рутин. Витамины как компоненты ферментов. Антивитамины.

Динуклеотидные коферменты. Нуклеотиды как коферменты. Простагландины как производные полиненасыщенных жирных кислот. Биогенные амины. Ацетилхолин. Железопорфирины. Хлорофилл и другие растительные пигменты.

Минеральный состав клеток. Микроэлементы. Полиморфизм амфифильных соединений в водных растворах (мицеллы, эмульсии, ламеллы, бислойные структуры). Участие минеральных веществ в формировании третичной и четвертичной структуры биополимеров. Ферменты-металлопротеины. Роль минеральных элементов в обмене веществ. Гормональная регуляция водного и минерального обмена.

Обмен веществ и энергии в живых системах

Круговорот веществ в биосфере. Биологические объекты как стационарные системы. Сопряжение биохимических реакций. Метаболические пути и циклы. Обратимость биохимических процессов. Катаболические и анаболические процессы. Единство основных метаболических путей во всех живых системах.

Модели строения биологических мембран. Роль мембран в метаболизме и их разнообразие. Химический состав мембран. Белки мембран. Липиды мембран. Углеводные компоненты мембран. Перенос веществ через мембраны. Проницаемость биологических мембран. Электрохимия осмотических явлений. Участие мембран в межклеточных взаимодействиях. Трансмембранная передача сигнала.

Основные понятия биоэнергетики. Биологическое окисление. $AT\Phi$ – универсальный источник энергии в биологических системах. Макроэргические соединения (нуклеозид ди- и трифосфаты, пирофосфат, гуанидинфосфаты, ацилтиоэфиры).

Окислительное фосфорилирование. Цепь переноса водорода и электронов Структура дыхательной цепи. Коферменты цепь). окислительновосстановительных реакций (НАД+/НАДН, НАДФ+/НАДФН, ФМН/ФМН-Н2, ФАД/ФАД-Н2). НАД- и НАДФ зависимые дегидрогеназы. Флавиновые ферменты, убихинон, цитохромы и цитохромоксидазы. Электронтрансферазные реакции. Циклический векторный перенос протона. Окислительное фосфорилирование в дыхательной цепи. Энергетическое значение ступенчатого транспорта электронов от субстратов окисления к кислороду. Биологические генераторы разности электрохимических потенциалов ионов. Митохондрии, структура и энергетические функции. Трансмембранный потенциал ионов водорода как форма запасания энергии. Электрохимическое сопряжение в мембранах и окислительное фосфорилирование, синтез АТФ. АТФ-азы, их строение и функции.

Представление о механизмах сопряжения окисления и фосфорилирования в дыхательной цепи. Хемиосмотическая теория сопряжения окислительного фосфорилирования и тканевого дыхания.

Терминальное окисление. Механизмы активации кислорода. Оксидазы. Разобщители и ионофоры. Механизмы разобщения окислительного фосфорилирования и тканевого дыхания. Термогенез. Дыхательные цепи микросом. Цитохром P-450 и окислительная деструкция ксенобиотиков. Активные формы кислорода, их образование и обезвреживание. Значение активных форм кислорода для функционирования клетки.

Фотосинтез как основной источник органических веществ на Земле. Работы К.А. Тимирязева. Растительные пигменты, хлорофиллы. Генерация и роль $AT\Phi$ в процессе фотосинтеза.

Метаболизм углеводов, липидов, белков

Органная специфичность пищеварительных протеаз, липаз, гликозидаз. Распад белков, липидов и углеводов в процессе пищеварения. Роль желчных кислот в метаболизме липофильных соединений. Пристеночное пищеварение в кишечнике. Транспорт метаболитов через биологические мембраны. Понятие об активном транспорте, секреции, пиноцитозе.

Обмен углеводов.

Углеводы и их ферментативные превращения. Ферменты, катализирующие взаимопревращения сахаров и образование фосфорных эфиров. Ферменты, гидролизующие олигосахариды. Гликозилтрансферазы. Амилазы. Распространение в природе и характеристика отдельных амилаз. Общая характеристика процессов распада

углеводов. Синтез и распад гликогена, гормональная регуляция процесса. Анаэробный распад углеводов. Последовательность реакций гликолиза. Гликолиз и гликогенолиз как метаболическая система. Взаимосвязь процессов гликолиза, брожения и дыхания. Спиртовое, молочнокислое брожение. Работы Л. Пастера. Энергетическая эффективность гликолиза, гликогенолиза и брожения.

Аэробный и анаэробный распад углеводов. Химизм анаэробного и аэробного распада углеводов. Окислительное декарбоксилирование пировиноградной кислоты. Механизм действия пируватдегидрогеназного комплекса. Энергетическая эффективность аэробного и анаэробного распада углеводов.

Цикл дикарбоновых и трикарбоновых кислот. Энергетическая эффективность цикла. Прямое окисление углеводов. Пентозофосфатный путь окисления углеводов. Глиоксилатный цикл. Образование органических кислот в растениях.

Глюконеогенез. Метаболизм фруктозы и галактозы.

Регуляция метаболизма углеводов.

Обмен липидов. Ферментативный гидролиз жиров. Роль желчных кислот в расщеплении жиров. Липазы, распространение в природе и характеристика. Липолиз триглицеридов. Окислительный распад жирных кислот. Бета-окисление жирных кислот, стадии процесса. Энергетическая эффективность распада жирных кислот. Роль карнитина в метаболических превращениях жирных кислот. 4-фосфопантетеин и его роль в биосинтезе жирных кислот. Биосинтез жирных кислот. Основные этапы биосинтеза жирных кислот. Синтаза жирных кислот. Коэнзим А и его роль в процессах обмена жирных кислот.

Биосинтез триглицеридов. Ферментативные превращения фосфатидов. Биосинтез холестерина и его регуляция. Значение холестерина в организме. Стероиды как провитамины Д.

Обмен белков. Пути включения углерода, азота, серы и других неорганических соединений в органические вещества. Ассимиляция молекулярного азота и нитратов. Нитрогеназа, нитратредуктаза и нитритредуктаза. Заменимые и незаменимые аминокислоты. Пути повышения пищевой ценности белков.

Кетокислоты как предшественники аминокислот. Прямое аминирование. Переаминирование и другие пути превращения аминокислот. Аминотрансферазы. Другие пути биосинтеза аминокислот.

Протеолитические ферменты (пептидгидролазы), характеристика и распространение в природе. Отдельные представители (пепсин, трипсин, химотрипсин, папаин, амино- и карбоксипептидазы, лейцинаминопептидаза). Лизосомы. Использование протеолитических ферментов в промышленности и медицине.

Общие пути обмена аминокислот. Дезаминирование аминокислот. Типы дезаминирования. Механизм окислительного дезаминирования аминокислот.

Трансаминирование аминокислот. Механизм реакции трансаминирования с участием пиридоксальфосфата. Роль трансаминаз и реакций трансаминирования в обмене аминокислот.

Декарбоксилирование аминокислот. Типы декарбоксилирования. Биогенные амины, пути их образования и превращений.

Роль аспарагина, глютамина и мочевины в обмене азота. Обезвреживание аммиака в организме. Орнитиновый цикл мочевинообразования.

Специфический распад и превращения отдельных аминокислот.

Обмен нуклеотидов. Распад нуклеопротеидов. Нуклеазы. Синтез и распад пуриновых нуклеотидов. Синтез и распад пиримидиновых нуклеотидов. Синтез гема. Распад гема и обезвреживание билирубина.

Матричные процессы. Биосинтез белка

Понятия ген и оперон. Клеточный цикл. Активный и неактивный хроматин. Структура хромосом. Роль нуклеиновых кислот в биосинтезе белков.

Биосинтез нуклеиновых кислот. ДНК-полимеразы, их роль в репликации ДНК. Ферменты репликации. Формирование репликационной вилки и стадии репликации ДНК. Работы С. Очоа и А. Корнберга. Особенности репликации эукариот.

Транскрипция. РНК-полимеразы. Информационная РНК как посредник в передаче информации от ДНК к рибосоме. Синтез мРНК. Этапы процесса транскрипции, информосомы. Посттранскрипционный процессинг мРНК.

Биосинтез белка. Этапы биосинтеза белка. Активация аминокислот. Роль аминоацил-тРНК-синтетаз. Транспортные РНК и их роль в процессе биосинтеза белка. Генетический код. Рибосомы: структура, состав и функции. Механизм считывания информации в рибосомах. Процесс трансляции. Инициация трансляции, элонгация и терминация. Полисомы. Регуляция синтеза белка. Структура lac-оперона. Посттрансляционные изменения в молекуле белка. Репарация ДНК. Мутации и направленный мутагенез. Плазмиды. Клонирование ДНК. Полимеразные реакции нуклеиновых кислот и их применение в практике.

Взаимосвязь и регуляция процессов обмена веществ в организме

Единство процессов обмена веществ. Связь процессов катаболизма и анаболизма, энергетических и конструктивных процессов. Энергетика обмена веществ. Взаимосвязь между обменами белков, углеводов, жиров и липидов. Ключевые ферменты. Способы регулирования метаболизма. Регулирование экспрессии генов. Наследственные болезни. Посттрансляционная ковалентная модификация белков (внутриклеточные протеазы, протеинкиназы, протеинфосфатазы), метилирование, гликозилирование, амидирование и дезамидирование и др. модификации. Регулирование активности ферментов субстратом, продуктом и метаболитами. Молекулярные основы гомеостаза клетки.

Гормоны. Классификация гормонов. Рецепторы гормонов. Тканевая и видовая специфичность рецепторов гормонов. Гормоны с трансмембранным механизмом действия. Мембранные рецепторы и вторичные посредники. Внутриклеточные и ядерные рецепторы гормонов, их влияние на экспрессию генов. Номенклатура и классификация гормонов по химической структуре, по месту образования, по механизму действия. Особенности механизма действия гормонов белковой, пептидной и аминокислотной природы. Аденилатциклаза и фосфодиэстераза. Ц-АМФ как вторичный месседжер и ковалентная модификация белков-ферментов. Рецепторзависимые ионные каналы. Инозитол-трифосфат и Ca^{2+} как вторичные посредники. Гормонзависимая химическая модификация белков. Протеинкиназы.

Механизм действия гормонов стероидной природы. Внутриклеточные рецепторы. Влияние на синтез белков.

Строение, механизм действия и влияние на обмен веществ важнейших гормонов. Нарушения функции энлокринных желез: гипер- и гипопродукция гормонов. Общие принципы лечения таких состояний.

Простагландины и их роль в регуляции метаболизма и физиологических функций.

Экологическая биохимия. Биохимические основы взаимодействия живых организмов. Роль климатических условий.

Биохимическая адаптация: основные механизмы и стратегии. Адаптационные процессы у растений и животных. Адаптивное изменение биохимических процессов. Метаболическая регуляция активности ферментов как механизм адаптации к внешней среде. Адаптация ферментов к метаболическим функциям. Уровни регуляции ферментативной активности.

Обходные пути метаболизма. Адаптация к физической нагрузке. Анаэробный и аэробный метаболизм в мышцах. Регуляция мышечной гликогенфосфорилазы. Фосфофруктокиназа и гликолиз. Роль цикла Кребса в работе мышц.

Изменение биохимических процессов в условиях гипоксии. Снижение интенсивности метаболизма. Роль ацетальдегида при гипоксии. Выключение активного метаболизма. Метаболизм живых организмов при ангидробиозе. Гликоген как

предшественник многоатомных спиртов. Зимняя спячка у животных. Роль аминокислот. Кетоновые тела и их окисление. Дыхательные белки. Регуляция функции гемоглобина.

Адаптация организмов к температуре. Эндотермия и регуляция температуры тела. Бурая и жировая ткань. Влияние температуры на липиды мембран. Адаптация растений к изменениям температуры окружающей среды. Устойчивость растений к холоду. Стрессовые белки растений.

Окружающая среда как источник веществ, чужеродных для человека. Чужеродные соединения (ксенобиотики). Детоксификация как функция химической защиты.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Основная:

- 1. Албертс и др. Молекулярная биология клетки в 3-х т. М.: Мир, 1995.
- 2. Ашмарин И.П. Молекулярная биология. Л.: Изд. ЛГУ, 1977. 367 с.
- 3. Березов Т.Т., Коровкин Б.Ф. Биологическая химия: М.: Медицина, 2004. 704 с.
- 4. Белясова Н.А. Биохимия и молекулярная биология: Минск. Книжный дом, 2004. 415 с.
- 5. Березин И.В., Савин, Ю.В. Основы биохимии. Изд-во МГУ, 1990. 235 с.
- 6. Гудвин Т., Мерсер Э. Введение в биохимию растений. В 2 т. М.: Мир, 1986.
- 7. Жимулев И.Ф. Общая и молекулярная генетика.- Изд. 4-е. Новосибирск: 2007. 478 с.
- 8. Льюин Б. Гены. М.: Мир, 1987. 544с.
- 9. Ленинджер А. Основы биохимии. М.: Мир, 1985, Т 1-3, 320 с.
- 10. Молекулярная биология клетки: В 3 т. Албертс Б., Брей Д., Льюис Дж. и др. М.: Мир. 1994
- 11. Коничев А.С., Севастьянова Г.А. Молекулярная биология. М.: «Академия», 2003. 400с.
- 12. Кнорре Д.Г., Мызина С.Д. Биологическая химия. М.: Высшая школа, 2000. 480 с.
- 13. Кретович В.Л. Биохимия растений. М.: Высшая шк., 1986. 445 с.
- 14. Спирин А.С. Молекулярная биология. Структура рибосомы и биосинтез белка. М.: Высш.школа, 1990, 352с.
- 15. Страйер Л. Биохимия. т.1, 2, 3. М.: Мир, 1984.
- 16. Степанов В.М. Структура и функции белков. М.: Высшая школа, 1996.
- 17. Овчинников Ю.В. Биоорганическая химия. М.: Наука, 1987. 815 с.
- 18. Остерман Л.А. Методы исследования белков и нуклеиновых кислот. М., 2002. 248.

Дополнительная литература

- 1. Кольман Я., Рём К.-Г. Наглядная биохимия. М.: Мир, 2004, 469 c.
- 2. Клонирование ДНК. Методы. Под ред. Д. Гловера, М: Мир, 1988. 543с.
- 3. Структура и функции нуклеиновых кислот. Под редакцией А. С. Спирина. М.: Высшая школа, 1990. 303с.
- 4. Сэнгер М., Берг П. Гены и геномы. В 2-х т. Пер. с англ. М.: Мир, 1998.
- 5. Практическая химия белка: Пер. с англ. /Под ред. Дарбре А. М.: Мир, 1989 г.
- 6. Ферменты и нуклеиновые кислоты. СПб: Изд. СПбГУ, 1999. 152с.
- 7. Филиппович Ю.Б. Основы биохимии. М: Высшая шк., 1985. 503 с.
- 8. Хочачка П., Сомеро Дж. Биохимическая адаптация. М.:Мир, 1988. 569 с.
- 9. Уайт, А. Основы биохимии: в 3 т. М.: Мир, 1981.
- 10. Уотсон Дж., Туз Дж., Курц Д. Рекомбинантные ДНК. М.: Мир, 1986. 288с.